4 research outputs found

    Performance evaluation for tracker-level fusion in video tracking

    Get PDF
    PhDTracker-level fusion for video tracking combines outputs (state estimations) from multiple trackers, to address the shortcomings of individual trackers. Furthermore, performance evaluation of trackers at run time (online) can determine low performing trackers that can be removed from the fusion. This thesis presents a tracker-level fusion framework that performs online tracking performance evaluation for fusion. We first introduce a method to determine time instants of tracker failure that is divided into two steps. First, we evaluate tracking performance by comparing the distributions of the tracker state and a region around the state. We use Distribution Fields to generate the distributions of both regions and compute a tracking performance score by comparing the distributions using the L1 distance. Then, we model this score as a time series and employ the Auto Regressive Moving Average method to forecast future values of the performance score. A difference between the original and forecast returns the forecast error signal that we use to detect tracking failure. We test the method with different datasets and then demonstrate its flexibility using tracking results and sequences from the Visual Object Tracking (VOT) challenge. The second part presents a tracker-level fusion method that combines the outputs of multiple trackers. The method is divided into three steps. First, we group trackers into clusters based on the spatio-temporal pair-wise relationships of their outputs. Then, we evaluate tracking performance based on reverse-time analysis with an adaptive reference frame and define the cluster with trackers that appear to be successfully following the target as the on-target cluster. Finally, we fuse the outputs of the trackers in the on-target cluster to obtain the final target state. The fusion approach uses standard tracker outputs and can therefore combine various types of trackers. We test the method with several combinations of state-of-the-art trackers, and also compare it with individual trackers and other fusion approaches.EACEA, under the EMJD ICE Project

    Antibacterial Efficacy of <i>N</i>-(4-methylpyridin-2-yl) Thiophene-2-Carboxamide Analogues against Extended-Spectrum-β-Lactamase Producing Clinical Strain of <i>Escherichia coli</i> ST 131

    No full text
    Development in the fields of natural-product-derived and synthetic small molecules is in stark contrast to the ongoing demand for novel antimicrobials to treat life-threatening infections caused by extended-spectrum β-lactamase producing Escherichia coli (ESBL E. coli). Therefore, there is an interest in the antibacterial activities of synthesized N-(4-methylpyridin-2-yl) thiophene-2-carboxamides (4a–h) against ESBL-producing E. coli ST131 strains. A blood sample was obtained from a suspected septicemia patient and processed in the Bactec Alert system. The isolate’s identification and antibacterial profile were determined using the VITEK 2® compact system. Multi-locus sequence typing of E. coli was conducted by identifying housekeeping genes, while ESBL phenotype detection was performed according to CLSI guidelines. Additionally, PCR was carried out to detect the blaCTX-M gene molecularly. Moreover, molecular docking studies of synthesized compounds (4a–h) demonstrated the binding pocket residues involved in the active site of the β-lactamase receptor of E. coli. The result confirmed the detection of E. coli ST131 from septicemia patients. The isolates were identified as ESBL producers carrying the blaCTX-M gene, which provided resistance against cephalosporins and beta-lactam inhibitors but sensitivity to carbapenems. Among the compounds tested, 4a and 4c exhibited high activity and demonstrated the best fit and interactions with the binding pocket of the β-lactamase enzyme. Interestingly, the maximum of the docking confirmations binds at a similar pocket region, further strengthening the importance of binding residues. Hence, the in vitro and molecular docking studies reflect the promising antibacterial effects of 4a and 4c compounds
    corecore